Incomplete factorial and response surface methods in experimental design: yield optimization of tRNA(Trp) from in vitro T7 RNA polymerase transcription.

نویسندگان

  • Y Yin
  • C W Carter
چکیده

We have studied the yield of Escherichia coli tRNA(Trp) obtained from in vitro T7 RNA polymerase transcription using incomplete factorial and response surface methods. Incomplete factorial experiments were first used to estimate the relative impact of six variables on the yield of tRNA(Trp). Fifteen trials were performed according to a balanced and randomized design. The correlation between observed yield and all experimental variables was identified by stepwise multiple linear regression analysis. The concentrations of T7 RNA polymerase, DNA template, NTP and MgCl2 proved to be significantly correlated with the yield of tRNA(Trp). We then optimized the yield with respect to each of these four variables simultaneously with a designed, response surface experiment based on the Hardin-Sloane minimum prediction variance algorithm. Twenty experiments were performed, in duplicate, to sample the quadratic surface relating the yield to the four significant variables. Coefficients of the quadratic function with all two-factor interactions were evaluated by stepwise regression using least squares, and significant coefficients were retained. Partial differentiation of the resulting quadratic model showed it to possess an optimum. Transcription performed at the corresponding conditions yielded 6-fold more tRNA(Trp) than the initial conditions, confirming the predictive value of the experimentally determined response surface.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production of Cyclin D1 specific siRNAs by double strand processing for gene therapy of esophageal squamous cell carcinoma

Background: RNAi (RNA interference) is a new strategy in gene therapy and biotechnology which provides new promises in the treatment of different diseases such as cancer and viral diseases. CCND1 which is a key gene in cell cycle is amplified and over expressed in esophageal cancer. The objective of this study was production and siRNAs for CCND1, the key gene in cell cycle. Materials and Metho...

متن کامل

Properties of a transfer RNA lacking modified nucleosides.

A transfer RNA complete devoid of modified nucleosides was synthesized by in vitro transcription, and some of its properties in aminoacylation and protein synthesis in vitro were studied. For this purpose, a plasmid was constructed which contained a glycine tRNA gene from Mycoplasma mycoides under the promoter of the T7 RNA polymerase, as well as a BstNI restriction site at the 3'-end of the tR...

متن کامل

Synthetic in vitro transcriptional oscillators

The construction of synthetic biochemical circuits from simple components illuminates how complex behaviors can arise in chemistry and builds a foundation for future biological technologies. A simplified analog of genetic regulatory networks, in vitro transcriptional circuits, provides a modular platform for the systematic construction of arbitrary circuits and requires only two essential enzym...

متن کامل

Anticodon bases C34 and C35 are major, positive, identity elements in Saccharomyces cerevisiae tRNA(Trp).

A single form of tRNA(Trp) exists in the yeast cytoplasm to respond to the unique codon, UGG, which specifies this amino acid. Mutations in the anticodon of the corresponding gene, which generate potential nonsense suppressor tRNAs, have been generated in vitro and tested in vivo for biological activity. The amber (C35U) and opal (C34U) suppressors show strong and weak activities respectively w...

متن کامل

Bistability of an In Vitro Synthetic Autoregulatory Switch

The construction of synthetic biochemical circuits is an essential step for developing quantitative understanding of information processing in natural organisms. Here, we report construction and analysis of an in vitro circuit with positive autoregulation that consists of just four synthetic DNA strands and three enzymes, bacteriophage T7 RNA polymerase, Escherichia coli ribonuclease (RNase) H,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 24 7  شماره 

صفحات  -

تاریخ انتشار 1996